28 research outputs found

    Segmented Beam Dump for Time Resolved Spectrometry on a High Current Electron Beam

    Get PDF
    In the CLIC Test Facility 3 (CTF3), the strong coupling between the beam and the accelerating cavities induces transient effects such that the head of the pulse is accelerated twice as much as the rest of the pulse. Three spectrometer lines are installed along the linac with the aim of measuring energy spread versus time with a 20ns resolution. A major difficulty is due to the high power carried by the beam which imposes extreme constraints of thermal and radiation resistances on the detector. This paper presents the design and the performances of a simple and easy-to-maintain device, called âsegmented dump'. In this device, the particles are stopped inside metallic plates and the deposited charge is measured in the same way as in Faraday cups. Simulations were carried out with the Monte Carlo code âFLUKA' to evaluate the problems arising from the energy deposition and to find ways to prevent or reduce them. The detector resolution was optimized by an adequate choice of material and thickness of the plates. The overall layout of the monitor is described with special emphasis on its mechanical assembly. Finally, limitations arising at higher beam energies are discussed

    Injection Matching Studies using Turn by Turn Beam Profile Measurements in the CERN PS

    Get PDF
    The very small emittance beam needed for the LHC requires that the emittance blow-up in its injector machines must be kept to a minimum. Mismatch upon the beam transfer from one machine to the next is a potential source of such blow-up. The CERN PS ring is equipped with 3 Secondary Emission Grids (SEM-Grids) which are used for emittance measurement at injection. One of these has been converted to a multi-turn mode, in which several tens of consecutive beam passages can be observed. This allows the study of mismatch between the PS-Booster and the PS. This paper describes the instrument and experimental results obtained during the last year

    Operational experience with the CERN hadron linacs

    Get PDF
    The present CERN proton linac (Linac2) was commissioned in 1978 and since that date has been the primary source of protons to the CERN accelerator complex. During the past 18 years, the machine has had a very good reliability record in spite of the demands made upon it. Modifications have been made with the view of maintaining this reliability with reduced resources and new requirements from the users. Further demands will be made in the future for LHC operation. In 1994, a new linac for heavy ion production was put into service replacing the original CERN proton linac. As this machine was built within an international collaboration, operation had to take into account the novelty of the techniques used and the variety of equipment supplied by outside collaborators. Even so, the new machine has also had very good reliability

    Time resolved spectrometry on the CLIC Test Facility 3

    Get PDF
    The high charge (>6ìC) electron beam produced in the CLIC Test Facility 3 (CTF3) is accelerated in fully beam loaded cavities. To be able to measure the resulting strong transient effects, the time evolution of the beam energy and its energy spread must be determined with at least 50MHz bandwidth. Three spectrometer lines are installed along the linac in order to control and tune the beam. The electrons are deflected by dipole magnets onto Optical Transition Radiation (OTR) screens which are observed by CCD cameras. The measured horizontal beam size is then directly related to the energy spread. In order to provide time-resolved energy spectra, a fraction of the OTR photons is sent onto a multi-channel photomultiplier. The overall setup is described, special focus is given to the design of the OTR screen with its synchrotron radiation shielding. The performance of the time-resolved measurements are discussed in detail. Finally, the limitations of the system, mainly due to radiation problems are discussed

    First Results from Betatron Matching Monitors Installed in the CERN PSB and SPS

    Get PDF
    In order to satisfy the tight emittance requirements of LHC, betatron matching monitors, based on multiturn beam profile measurements, have been proposed and installed in the CERN SPS and PSB. The SPS monitor is based on a OTR beam profile acquisition system and was installed two years ago and has since been tested. It helped to uncover a mismatch between PS and SPS. Experience and more results wil l be presented. The PSB monitor is based on a wire SEM and has been installed at the beginning of 1998. The first results presented here are very promising

    Semgrid lil

    No full text
    corecore